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multicritical point 
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i Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA 
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Abstract. A dimer model with competing interactions and ground state frustration is defined 
on the 4-8 lattice and the exact solution is obtained for the specific heat and densities of 
dimers. The model contains an energy parameter r, so phase transitions appear as lines in 
the (T, r )  phase diagram. Two distinct kinds of striped incommensurate phase appear, 
sep-retci from twc ~ ~ . m m ~ n s x z t e  ifid !YYO disordered phzses hy I K~type  tnnsition lize, 
and separated from each other by an 0-type transition line. The phase diagram contains 
a novel OK multicritical point where a K-type transition line crosses an 0-type transition 
line. The asymptotic scaling form at the OK multicritical pnint is the first member of a 
new class of scaling forms distinct from the two classes that encompassed all previous 
exact SolutionS of dimer models. The 4-81411 model corresponds to the F-model at one 
temperature in a new kind of field. 

1. Introduction 

Exact and rigorous statistical mechanical solutions to specific models play a central 
role in the theory of phase transitions by providing data against which general theories 
are tested. Historically, the solution of the two-dimensional Ising model revealed that 
the variety of critical phenomena exceeds the limits prescribed by the classical theories. 
Exactly solved models even more artificial than the king model, such as the spherical 
model or the Gaussian model, have found enduring positions in the theory of phase 
transitions and critical phenomena. In this paper another datum is added to the still 
modestly small, but vigorously growing (Baxter 1982, Andrews et ol 1984) set of exact 
solutions. 

The starting point for the model (called the 4-8/4/1 model) solved in this paper 
resides in the field of adsorbed diatomic molecules on surfaces, otherwise known as 
dimer models. Such models have a number of other applications and they have enough 
history to have been the subject of a recent review (Nagle et al 1989). This might be 
considered to be an inauspicious starting point for new critical behaviour because all 
previous solutions of two-dimensional dimer models have yielded just two types of 
critical behaviour. The first 0-type of transition is characterized by a symmetric 
logarithmic singularity in the specific heat, first obtained by Onsager (1944) for the 
two-dimensional king model. The second K-type of transition is characterized by a 
highly asymmetric transition with a square root divergence (a = f )  on  one side only. 
This kind of transition, first obtained by Kasteleyn (1963) for a very simple dimer 
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model on an anisotropic lattice, is closely related to striped commensurate-incom- 
mensurate, Pokrovsky-Talapov (1979) transitions. 

Previous solved dimer models (Bhattacharjee 1984, Nagle and Yokoi 1987, Nagle 
et al 1989, Wu and Lin 1975) have exhibited both types of transitions as values of the 
model energy parameters are changed, with interesting crossover behaviour, but no 
model exhibited both types of transition as a function of temperature for a fixed value 
of the model parameters. The 4-81411 model in this paper bas this new property. 

The 4-81411 model will be explained in some detail in section 2 and the phase 
diagram will be derived in section 3. However, it is advantageous now to preview the 
phase diagram, shown in figure 1. The model has two energy intervals, E and 6, to 
yield a one-parameter, r = S / E ,  family. For 1 < r < 2, the model undergoes, as T is 
increased from 0, a K-type transition from an anisotropic phase Cl to a striped 
incommensurate phase I1 followed by a reversed K-type transition to a disordered 
phase D1. For 2 < r < IRE= 2.279 898 . . . the model undergoes five transitions, including 
an extra pair of K-type transitions due to the re-entry of the Cl phase. What is new 
is the appearance of an 0-type line of transitions for r > 2. Although the appearance 
of 0-type transitions and K-type transitions had not been unexpected, what was 
unexpected is the crossing of an 0-line with a K-line, which occurs at rOK= 
3.296 0 8 6 . .  . . This crossing will be called an OK multicritical point. It will be analysed 
in detail in section 5. As a result of the OK multicritical point, the sequence of thermal 
events for r R E < r <  r,, follows a substantially different course than for r >  roK. For 
r >  rOK there is a reversed K-type transition from the incommensurate 12 phase into 
the D2 disordered phase, which then undergoes a final 0-type transition into the most 
disordered D1 phase. In contrast, for rRE<r<rOK the final transition into the D1 
phase is a reversed K-type transition and the 0-type transition separates the incom- 
mensurate I2 phase from the incommensurate I I  phase. The distinction between the 
I1 and 12 phases will be completely characterized in section 4. In section 6 a correspon- 
dence between the dimer model and the F-model in a new kind of 4-sublattice or 
quarter field Q shows additional richness in the F-model. In tum, the correspondence 
identifies the 0-line of transitions as the outgrowth of F-model criticality in zero 
staggered field S. 

C S 0 Yokoi and J F Nagle 
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Figure 1.  The phase diagram far the 4-8/4/1 dimer model. Transition temperatures are 
shown as a function of the ratio r of the two energies in the model. 
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2. 4-81411 Model, ground states and basic excitations 

Figure 2 shows the unit cell for the 4-8/4/1 model. The underlying lattice is the 4-8 
lattice. Each allowed microstate of the model consists of dimers placed on the bonds 
of the lattice such that each vertex is covered by one and only one dimer. In addition, 
dimers on different bonds have different energies and activities. Each dimer on a bond 
labelled z in figure 2 has energy E and activity z = exp(-e/kT); each dimer on a bond 
labelled w has energy S and activity w=exp(-S/kT); and each dimer on a 
bond labelled 1 has zero energy and activity 1. The ‘Hamiltonian’ for the model is 
given by its classical energy for each allowed microstate, 

(1) E = n , ~  + n,S 

where n, and n, are the numbers of dimers on z and w bonds, respectively. The 
partition function is 

z=  2n.W””.  (2) 

In this paper the energies E and 6 will be positive, so the model is frustrated in the 
sense that at most half the dimers in a microstate can have zero energy and at most 
half the low energy bonds may be occupied by dimers. 

The 4-8/4/1 model has competing interactions as shown by the presence of three 
different kinds of ground states that appear as r is varied. Figure 3 shows the ground 
state for r > 2; this ground state occurs at T = 0 in the C2 phase in figure 1. One of 
the ground states that occurs at T=O in the C1 phase in figure 1 (2>  r >  1) is shown 
in figure 4. The C1 ground states have a degeneracy factor W = 4 for each unit cell; 
this comes about because the two dimers on each C and D square in figure 4 can be 
on either the vertical or the horizontal edges. The D1 phase ground states ( r <  1 in 
figure 1) are shown in figure 5; they carry a degeneracy factor W = 16 for each unit 
cell. The T = 0 boundaries of the D, C1 and C2 phases shown in figure 1 can be simply 
obtained by comparing the energies of the ground states. Also, the slopes of the phase 
lines at T = 0 can be simply obtained by a Clausius-Clapeyron argument where 
P E  = TPS to first order in T. For example, for the D1 to C1 transition near T=O, 
one has 2( r - l )=(kT/&)ln4 ,  so the slope of the phase line is dT /d r=e / (k ln2 ) .  
These simple results provide checks on the exact calculation in the next section. 

miErOJf.tSI 

Figure 2. 4-8/4/1 model. The 4-8 lattice is  shown by solid lines and the unit cell area is 
shown by dashed lines. Each bond is labelled with the activity, 1, z or w. of a dimer on 
that bond. For convenience in later figurer, the corner o f  each square marked by an open 
circle identifies the venex where the two bands with activity 1 meet. 
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Figure 3. The unique C2 ground state for I >  2 is shown by the solid black dimers located 
on some of the z and 1 bonds. This ground state energy is 6e per unit cell. Perturbations 
are indicated by grey dimers that alternate with black ground state dimers. To effect the 
perturbation. those black dimers that alternate with the grey dimers are shifted to the grey 
positions. The perturbation on the left side of the figure i s  a localized perturbation around 
an elementary octagon with energy increase 3s-4s. The perturbation on the right side of 
the figure is a BC wall with energy increase 6 - 2 ~  per unit cell traversed. 

Figure 4. A Cl ground state for 1 < I <  2 is shown by the solid black dimers. Per unit cell 
the ground State energy is 26+2c  and the degeneracy is W = 4 .  Perturbations are as 
described in figure 3. The local perturbation on the left increases E by 45 and the AB wall 
an the right increases E by 26-28 per unit cell traversed. 

Figures 3-5 also show some elementary perturbations from the ground states. These 
perturbations are conveniently classified as local perturbations and walls. The basic 
local perturbations consist of cyclic shifts of dimers around squares, as shown in figure 
5 ,  or around octagons, as shown in figures 3-5. By stringing together sequences of the 
basic local perturbations, larger perturbations can be made. The basic types of wall 
perturbations consist of AB walls, shown in figure 4. CD walls (not shown) or BC 
walls, shown in figure 3; D A  walls are symmetrically equivalent to BC walls. Stringing 
local perturbations together with a wall may cause the wall to wander in the horizontal 
direction. The possibility of wandering walls suggests that a K-type transition from 
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Figure 5. A D1 ground stale for r <  1 is shown by the solid black dimers. Per unit cell the 
ground state energy is 46 and the degeneracy is W =  16. Perturbations are as described in 
figure 3. The perturbations around the four squares, A, B, C and D on the left of the figure 
Cost no energy and show the 16 fold degeneracy per unit cell in the ground state. The two 
local perturbations on the right around the two fundamental octagons increase E by 4~ ~ 36 
and 4c - S, respectively. 

the anisotropic C1 and C2 phases into a striped incommensurate phase may take place 
as T i s  increased. Unlike the simple K-model of Kasteleyn (1963) the presence of local 
perturbations means that the model is not frozen into a simple ground state in the 
commensurate phases. This makes it much harder to predict the K-type transition 
temperature. It is therefore appropriate now to turn to the exact solution. 

3. Exact solution 

The Pfaffian method of obtaining exact solutions to two-dimensional dimer models 
has been amply reviewed (Montroll 1964, McCoy and Wu 1973, Nagle et a1 1989). 
i n e  soiuiion iakes ihe Foiiowing form For ihe iog of ihe pariition funciion per unit ceii: -. 

N 877 d 0  lo2- d+ In det M(u, v, w, z) (3) 
1 

f=-In Z =? 

where M is the 16 x 16 bond matrix of Kasteleyn (1963) and U = exp(i 0) and U = exp(i+). 
We find det M = ldet M,j2 where M, is an 8 x 8 sub-block of M and 

det MI( U, U, w, z) = a"- a ,v  - a _ , u - ' +  n2 (v2+  V 2  - U - U-') (4) 

where 

a, = z8 f 4 w 3 z 4 +  4wz4+ 16w' 

= w 2 z 6 +  zh+gy!lz' 

U ~ . ,  = 2wz6+4w422+4w2z2 
2 4  a,= w 2 .  
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It is illuminating to highlight the locations of the zeros of det M,(u, U, w, z )  because 
these locations indicate the nature of the phases and their crossing of the unit circle 
in the complex u-plane locates the phase transition lines. Let us write 

det M,(u) = ( u  - u I ) ( u  - u z ) ( u -  u , ) (u-  u4 ) /u2  ( 5 )  
where 

U, > v*> U’ > U4 
U; = q ( 9 ,  w, 2 ) .  

The interesting zeros are U’ and U, which cross or touch the unit circle as a function 
of 0, w, 2. Figure 6 shows the pattern of these two zeros in the different phases. The 
zero U, always lies outside the unit circle and u4 lies inside the unit circle, so these are 
ignored in figure 6. 

Figure 6. The pattern of zeros u2 and U, of det M,(B, U, w, i) in the complex v-plane for 
one value of ( w ,  I) in each of the six phases. Each thick grey line shows the band for one 
of the zeros as 0 i s  varied from 0 to v. 

As usual (Nagle et al 1989), an 0-type transition occurs when two bands of zeros 
simultaneously touch the same point on the unit circle for one value of 8. In the 
4-81411 model this occurs when 

2 2  
w=-. 

2 

A K-type transition occurs when the end of one band of zeros touches the unit circle 
for one value of 9. For the present model this occurs when 

or 

(7) 
2 

w=- [(z4+42’ - 16z2+8z +4)”*-  ( Z’ - 22+2)]  
4(2 - z )  

or 

2 
w =- [z’ +22 + 2 1  (z4 -42’ - 162’- 82 + 4)”’l. 

4(2+z)  
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The first relation in (7)  gives the locus of the reverse K-type transition between phases 
I2 and D2 and between I1 and D1. The second relation in (7) gives the locus of the 
K-type transition from the C2 phase. The third relation in (7)  gives the locus of the 
K-type transition from the C1 phase. As usual, a phase is a striped incommensurate 
phase if and only if a band of zeros crosses the unit circle as a function of 8. Figure 
6 identifies the I1 and I2 phases as striped incommensurate phases for the 4-8/4/1 
model. 

The density of dimers of various types may be obtained by taking the appropriate 
derivative o f f =  N-l In Z in (3), such as 

where the last equality results by performing the 4 integration using residues. From 
the energy per unit cell U = &pz+ Sp,, the specific heat per unit cell c can then be 
obtained by an additional derivative with respect to T, c = du/dT. 

4. Thermodynamic functions 

From the analysis in the preceding section we have calculated various thermodynamic 
functions which will be presented graphically in this section. Before presenting these 
results, however, a discussion will be given of a very useful density, called px, that 
was not obvious a priori. 

The motivation for searching for a new density in addition to the obvious ones 
corresponding to density of dimers on z, w or 1 type bonds, is to find a density that 
vanes only when the density of walls changes and not when local perturbations are 
activated. In the case of the 4-8/2/1 model solved earlier (Nagle and Yokoi 1987), 
this role was played by the linear combination px = pz - pw which counted the density 
of light minus heavy walls. For the present 4-8/4/1 model there are also different 
kinds of walls, but all linear combinations of p , ,  pw and pz are coupled to the local 
perturbations. A suitable px density was found by considering all possible perturbations 
to the activities (24 in number since the unit cell has 24 bonds). Many possibilities 
were eliminated by requiring changes in the density to be zero for local perturbations 
and non-zero for walls. The remaining possibilities all led to the same px. This px can 
be calculated by including perturbation activity factors x or x-' to various bonds in 
the unit cell in figure 2. The factor x is attached ta diagonal bands running in the 
SE-NW direction and which cross either horizontal dashed unit cell line. The factor 
x-' is attached to diagonal bonds running in the SW-NE direction and which cross 
either horizontal dashed unit cell line. It may be verified that any local perturbation 
does not change the power of x in the partition function, so i t  does not change px.  
The value of for the DI ground state is zero, for the Cl ground state it  is +1, and 
for the C2 ground state it is -1 .  When an AB wall is introduced into the C1 ground 
state, it reduces the value of N,p, by - 1 ,  where Nh is the number of unit cells in the 
horizontal direction in the entire lattice; if all AB walls are formed from the C1 ground 
state, one has the DI ground state and px = 0. When either a BC or a DA wall is 
introduced into the C2 ground state, it increases the value of Nhpx by +l;  if all BC 
and DA walls are formed from the C2 ground state, one has the Cl ground state. For 
this model CD walls always cost the highest free energy and do not play an active role. 
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The px density is one of the easiest thermodynamic functions to calculate because 
x is always paired with U in det M,(u, U, x, w, z) .  Therefore, 

P x  =x(df/Jx)Ix=l= u(Jf/Ju)Ix=i 

dO[ln det M(+ =2v)  -In det M(+ =O)] (9) 

Since [!ndetM!n,=2v!-!ndetM!n,=n)!=??rin(L!w,z) where .?!!A, W,?) is the net 
number of times det M(4, 0, w, z) goes around the origin counterclockwise in the 
complex u-plane, n is the number of zeros of det M minus the number of poles 
(including two from the U-* factor in ( 5 ) )  inside the unit circle. From figure 6 it can 
be seen that the number n(0, w, z )  only changes in the striped incommensurate phases 
I1 and 12. 

Figures 7-12 show the results for the specific heat C and the densities px, p, and 
p. ( p ,  = 8 - p ,  - p z ) ,  as a function of T for five different values of r. The specific heat 
in figure 7 is similar to the specific heat for the 4-81211 model (Nagle and Yokoi 1987) 
with a K-transition followed by a reversed K-transition. For that 4-8/2/1 model the 
function p.-, plays the same role as px in the present 4-8/4/1 model. However, px 
varies from 1 in the C1 phase to 0 in the D1 phase whereas P . - ~  was 0 in both the 
low and high temperature phases for the 4-81211 model. The specific heat in figure 8 
has five singularities, although the amplitude of the 0-type transition is very small 
compared with the amplitudes of the K-type transitions. The behaviour of px shows 
that there are three distinct non-incommensurate phases, C1, C2 and D1. Figure 9 
shows the thermal behaviour for the re-entrant value rRE where a K-type and a reverse 
K-type transition coalesce. The density functions exhibit discontinuous first derivatives, 
but the amplitudes conspire to  yield a continuous specific heat C with discontinuous 
dC/dT. For larger r the 0-type anomaly becomes more conspicuous as shown in figure 
10 and the 11-Dl reverse K-type anomaly becomes weaker. Figure 1 1  suggests that 

4 7 - 1  ,=1.8 

..................... .... ........... 
.......... ~ * -w-=.7~y.<:-,=.-.- 

................... 1 t 

0 !  ____I 
0.7 0.8 0.9 1 .0  

kgT/c 

Figure 7. Results for the specific heat, c1k.T. and the dimer densities, p y ,  p;. pi, as a 
function of  teml)erature for r =  1.8. 
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Figure 8. Results for the specific heat, c / k . T ,  and the dimer densities, p r , p I , p x  as a 
function of temnerature far I = 2.25. 

. -' ........ .................................. 

...... 

4 

0.5 1.0 
kgTh 

Figure 9. Results for the specific heat, elk,T,  and the dimer densities, p b . p ; . p , ,  as a 
function of temperature for I = rRE = 2.279 848. . . .  

the specific heat anomaly at the OK multicritical point is 0-type and the reverse K-type 
anomaly has been suppressed, only to reappear again for r >  r,, as shown in figure 12. 

5. OK multicritical point 

From the figures in the preceding section it appears that the specific heat anomaly 
near the multicritical point is symmetrical, similar to the specific heat of the 0-type 
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5 

3 .  
c2 01 1 

................. 

....... ..... ...... 
....... 

.................. 

the dimer densities, 

and the dimer densities, p.. p i .  px  as a 

transition and that the amplitudes of the K-type singularities may become vanishingly 
small. In this section an analysis will be performed to obtain the singular behaviour 
of the specific heat for r = rOK, similar to the extraction of the specific heat singularities 
of the K-model and the SCD-model which were reviewed by Nagle et al (1989). This 
analysis is illuminating in its own right and is important to confirm the results of the 
numerical integrations that were required to obtain the graphs in the previous section. 

It is appropriate to define two reduced temperatures; I, will be the reduced 
temperature that goes to zero on the 0-line of transitions and f k  will be the reduced 
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Figure 12. Results for the specific heat, e1k.T. and the dimer densities, p x . p i , p u  as a 
function of temperature for I = 4. 

temperature that goes to zero on the K-line of transitions that cross the 0-line at the 
OK multicritical point. The singular contribution, f,, comes from the small 0 and $ 
region of the integral in (3), 

f =  L a  Ced+!nde:M(r,YJ,e,+) (IC?) '"-.I, 1, 
where E is a small arbitrary cut-off, the sole effect of which is to ignore non-singular 
contributions to the free energy. Likewise, to determine the leading singular behaviour 
it is sufficient to consider only the most relevant terms in the function det M(z, w, 0, $), 
for small 9 and 4. In the vicinity of the multicritical point the determinant is represented 
by the asymptotic form, omitting higher-order terms, 

det M =  (tkf:+82+$2)2+(t~$)2. (11) 

de tM=(tz+02+$2)2 .  (12) 

When 1, remains non-zero, this form for det M reduces to the 0-type form, 

When to  remains non-zero, det M reduces to the K-type form, 

det M = ( t ,+  02)2+42. (13) 
As the multicritical point is approached for r = roK, tk OC to = t and 

det M = ( t 3 + 0 2 + $ 2 ) 2 +  t 2 $ 2 ,  (14) 
Details of the integration of (10) are given in the appendix. The results are, for fk > 0, 

i i j j  I_ = . 2  I . . .  \ . I .  I = - - [  o i l + 4 r k )  Inib s 2  

and for tk < 0, 
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The multicritical scaling function in (15) and (16) contains the critical behaviour 
of the 0-line as can be seen by taking I, f 0 and I,= f, obtaining both for f k  > 0 and f k  < 0 

f, - - t’ In1 I ) .  (17) 

The K-line behaviour is also contained in (15) and (16) as seen by taking f , # O  and 
f r =  f ;  there is no singular behaviour for f > O  and for t < O  the K-transition result 

f ,-!t!’/* (18) 

is recovered to lowest order. Finally, when the multicritical point is approached, f o x  f 
and 1, OC 1. Then, for f > 0 (15) gives, to lowest order in 1, 

and for f < O  (16) gives 

f, - - t2  Inltl 

Therefore, the specific heat at the OK multicritical point is dominated by a logarithmic 
divergence, as suggested by numerical calculations, even though a weaker singular 
term /t(’/* is present in the free energy for t <O. 

It is interesting to consider the exact asymptotic scaling equation (15) and (16) in 
the context of general multicritical scaling. First, it is useful to rewrite det M in (14) as 

det M = f6[(1 +( 0 2 / f ’ )  + (4’ / f3) ) ’+(  +2/t4)1 (21) 

where the contributions for small 0 come from the horizontal long wavelength 
wavenumbers and the contributions for small 4 come from the vertical long wavelength 
wavenumbers. This strongly suggests that the horizontal 0 correlations scale as 
i.e. uX =$, and that the vertical 4 correlations scale as f C 2 ,  i.e. u.” = 2. Although these 
values of Y have not been calculated rigorously for the OK multicritical point, the 
same analysis for the K-transition gives the values of U, =+ and vV = 1, and these were 
obtained rigorously (Yokoi ef al 1986). Also, the same analysis gives the well-known 
values U, = 1 = up for the 0-type transition. Since anisotropic hyperscaling, 2 -a = 
uX+ vY, also holds for the K-type and 0-type transitions, it is reasonable to consider 
its predicted value U =: for the O K  multicritical point. This line of reasoning leads to 
the foiiowing OK muiticriiicai scaiing Form 

f ~ - f ~ ~ ~ Y Y ” ( f , / f ~ ) - t ~ / ’ Y * ( f k / f o )  (22) 

where the value of the crossover exponent 4 may usually be assumed to be one when 
critical lines cross at non-zero angle. Supposing the scaling function were Y - ( x )  = 1 ~ 1 ” ~  
and Yt = O  in (22) very nicely reproduces (18) and the last term in (20). These are the 
terms that are associated with walls and with anisotropic correlation functions. 
However, to accommodate the 0-type f 2  l n l f  singularity requires adding lfO1-’’’ Inlf,l 
to Y‘. This requires that the scaling function Y’(x, y )  be a function of y = I, as well 
as of x = f k / f o .  If the additional term did not dominate Y for y - 0 ,  then y would be 
irrelevant and we would have the usual scaling behaviour with the scaling function 
Y(x ,  0). However, the second term in Y ( x , y )  evidently dominates for y+O, and the 
variable y cannot be ignored; it is in this respect a dangerous irreleuanf variable (Fisher 
1983). 

The preceding discussion suggests that the correlation functions might be interesting 
at the OK multicritical point. The dominant f 2  In(f(  singular thermal behaviour would 
suggest U - I whereas the above scaling analysis of det M yields U ,  =$ and U,” = 2. 
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Perhaps there are two different sets of relevant correlation lengths at the OK multicritical 
point, corresponding to choice of different dimer-dimer pair correlations in the unit 
cell. Perhaps one set of pair correlations has one of the sets of correlation lengths and 
exponents and another set of pair correlations has the other. 

In summarizing this section it may be worthwhile to state how the OK multicritical 
point in this paper fits into the spectrum of multicritical points. Ordinary multicritical 
points may be characterized as having critical exponents that have values different 
from the critical exponents of the critical lines meeting at the multicritical point. A 
trivial multicritical point may be characterized by two critical lines crossing, as in this 
paper, but with the critical behaviour of neither line being affected by the crossing. 
The OK multicritical point is neither ordinary nor trivial. The critical behaviour at the 
OK point is dominated by the logarithmic singularity of the 0-transition, so no new 
exponents appear, unlike ordinary multicritical points. However, near the OK point 
the K-transition is strongly damped by a factor of t:, so one of the transitions is 
strongly affected by the crossing, unlike a trivial multicritical point. 

Finally, it may be mentioned that the OK multicritical point is different from the 
multicritical point found by Nienhuis et a1 (1984) and again by Nagle and Yokoi 
(1987). That multicritical point, which is an 0-transition when approached from certain 
directions, lies at the intersection of two K-transition lines. Also, the sequence of 
phases as one proceeds around the multicritical point is C-IC-C-IC, not the C-C-IC- 
IC sequence for the OK multicritical point studied here. 

6. Correspondence with the F-model in a quarter field 

Baxter (1970) used dimer models on the 4-8 lattice to solve the six-vertex F-model in 
a staggered field at one temperature. It is therefore appropriate to investigate what 
vertex model corresponds to the present 4-8/4/1 dimer model. This investigation is 
rewarding not only in illuminating additional richness in the F-model, but it also 
reveals the underlying dimer model phase diagrams in a more symmetrical fashion. 

The basic correspondence between the arrowlvertex configurations of the F-model 
and the 4-8/41 1 dimer model is shown in figure 13 for sublattice A. The correspondence 
on the B, C and D sublattices is affected by two considerations. First, the correspondence 
reverses the arrows on the B and D sublattices, thereby reversing the staggered field 
S on vertices w s  and we.  Second, the rotation of the locations of the low energy dimers 
on the squares shown in figure 2 translates to a quarter field Q that couples to the 
arrow configurations w,, i = 1,. . . ,4.  The Q field points in the NW direction on the 
A sublattice, the NE direction on the B sublattice, the SE direction on the C sublattice 
and the SW direction on the D sublattice. The F-model vertices with polarization along 

F-Energy .aipF -a++ a+c, Q+EF +s -s 

4-81411 Energy f E F+& st& &-hTDln2 ZE 

Figure 13. Correspondence between dimer configurations in the 4-01411 model and arrow 
configurations in the F-model for the A-rublattice. The arrow confisuration w5 corresponds 
to two dimer configurations shown by black dimers and grey dimers, respectively. 
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(opposite) these directions have energy EF- Q ( E ~ +  Q). The Q field contrasts with 
direct fields V and H which point in the same direction on all sublattices. 

Figure 13 also shows the energies of the 4-81411 dimer model, which is a free 
energy in the case of w5 since this corresponds to two dimer configurations, The 
partition functions are related by  

(23) 

which effectively normalizes the ground states of the two models. Inclusion of the 
factor (2wz2)-l/’ results in the modified dimer activities w ,  = w , = ( ~ w ) - ” ~ ,  w 3-  - w 4- - 
(w/Z)”~  and w5 = l / w , =  ( ~ W / Z ~ ) ” ~ .  Equating Boltzmann factors for the F-model for 
w, w3 yields 

exp(-2~,/kT,) =+ (24) 

which is just the equation that determines the only value of T, for which the F-model 
may be solved as a dimer problem. Since TF is fixed, it is convenient to absorb a factor 
of l/kTF into the F-model fields S and Q. Then, equating the Boltzmann factors for 
w,/ w3 yields 

C S 0 Yokoi and J F Nagle 

2 -4N 
ZF(S, Q; TF)=(~WZ 2 4 - 8 / 4 / 1 ( 2 ,  W; To) 

2Q=SlkTD= r/(kT,/E) ( 2 5 )  

2s = (8 -2e)/kTD -In 2. (26) 

Other useful correspondences include the direct polarization P and the staggered 
polarization Ps of the F-model, 

p = P x / 2  Ps = -2 + (pJ2). (27) 

Using the exact solution for the 4-81411 dimer model in section 3 and the correspon- 
dences in (25) and (26), it is straightforward to obtain the phase diagram shown in 
figure 14 for the F-model in S and Q fields at the temperature TF given by (24). This 

and equating the Boltzmann factor for w, vertices yields 

Q 

Figure 14. Q - S  phase diagram for the F-model at one T,. The solid lines are K-type 
transitions and the bold dashed lineat S=OistheO-typeline.The namesofthecorrespond- 
ing phases in the 4.81411 mndel are indicated and the direct polarization P is shown for 
those phases with constant p.. Three thermal trajectories for the 4-81411 dimer model are 
shown in light dotted lines with the solid triangle showing T,=m. 
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phase diagram reveals the symmetries between the X1 and X2 phases, where X = C, 
I or D, in figure 1. Also, the 0-line in figure 1 is the S = 0 line in figure 14. Unlike the 
K-type transitions involving walls, this is not a transparent quantity in the dimer 
models. Therefore, this correspondence adds insight into the behaviour of the 4-8/4/1 
dimer model. 

Along the S = 0 0-line the staggered susceptibility diverges, although the amplitude 
of the logarithmic singularity grows smaller with increasing Q. This result is not 
immediately obvious for the OK multicritical value QOK because the asymptotic form 
for det M changes to 

(28) 

which is different from both the 0-type form in (12) and the OK multicritical form in 
(14). However, a closely similar analysis to that in section 5 shows that the staggered 
Susceptibility continues to diverge logarithmically with S. 

It is interesting to contrast the S-Q phase diagram in figure 14 with the phase 
diagram for the F-model in an S field and a direct field. There are basically two distinct 
types of direct field that may be considered. In Baxter’s (1970) notation V is a direct 
field pointing in the NW direction for all sublattices for the polarized vertices in figure 
13. (The 4-8/2/1 dimer model discussed by Nagle and Yokoi (1987) corresponds to 
the F-model in a V field, as noted by Onody and Kurak (1988).) We will call the direct 
field D if it points in the N (vertical) direction in figure 13; in Baxter’s notation this 
is V = H. Figure 15 shows both the S- V and S-D phase diagrams. As pointed out by 
Baxter (1970), the V field is special in that there is no perfectly ordered high field 
phase. However, the particular feature of interest in comparing with figure 14 is common 
to both types of direct field, namely, the 0-type transition occurs only at the origin in 
figure 15. The application of any direct field removes the 0-type transition and replaces 
it with K-type transitions. 

In contrast to figure 15 the 0-type transition in figure 14 persists for all non-zero 
values of the field Q and the K-type transitions are either prevented from crossing the 
@axis or do so with zero amplitude at the OK multicritical point. Another way to 

det M( 0, +, w, z )  - (S4+ 0 2 +  + 2 ) 2 +  (S+)’ 

4r. I 

m 

. . 
2 4 

DIRECT FIELD (V or D) 

Figure IS. Phase diagram for the F-model at one temperature in staggered field S and 
direct field D (solid lines) and V (dashed lines) with YB~UCS of direct polarization P 
indicated. Each dotted line corresponds to Oc r,<m for a fired se1 of energies in a dimer 
model. such as the 4-81211 model. The solid triangle shows T,=m. 



558 

describe the phenomena is first to note that reversal of the staggered S field is associated 
with the 0-type transition whereas K-type transitions seem to require either direct or 
quarter fields. In these terms the phase diagram in figure 15 suggests that the direct 
field dominates the staggered field whereas the phase diagram in figure 14 suggests 
that the staggered field dominates the quarter field. It may be of interest in future work 
to determine the phase behaviour when all three fields are applied. 

C S 0 Yokoi and J F Nagle 
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Appendix. Details of OK scaling form analysis 

To determine the asymptotic behaviour of the free energy starting from (10) and (1  I ) ,  
it is convenient to use polar coordinates for the integrations, first defining r and a 
from ri = O'+ @i and @ = r sin a and then using x = ri. Then (11) becomes 

det M = ( f , f : + x ) * + x (  f, sin a)2, (29) 
Instead of working directly with (10) it is easier first to analyse the derivatives 

1 J  
Jfj det M d f j  

uj 1; dx 1: da- --et M 

where i is o or k and 

(31) 
d J 
- det M = 2t:(tkf:+x) 
d f k  J 1, 

--et M=2[det M+(t:f:-x2)]/f0. 

Using (31) the a integration was carried out in (30). It involves 

J O  

where 

Y=/x+fkt:l and x =x*+f:(2fk+1)x+ f ; f :  
with the results 

uk = sign(r,t:+x)X-"2 dx (33) 

and 
XI 

I, =(-/,  i I [ ! + E i g n ( ! ~ ! ~ + r ! ! ! , ! : - r ! . ~ - - 1 / 2 ! d .  (34) 
-o """I J o  

f k t : - x  = [& 1 +41,) -(dX/dx)]/2 

Then, the x integration was carried out in (33) and (34), using the following identities, 

(3.5) 
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and 

X-I t2  dx = ln[2X1’2+2x+ t2(2tk+ l)] = F ( x ) .  (36) I 
For tk > 0 this gives 

u k =  Tt:[F(x,)-F(O)] (37) 
and 

U, = (1 +4tk)uk/2f,+ T ( X ,  - X ( x , ) ~ ” + X ( 0 ) ” 2 ~ /  1,. (38) 

For tk < 0 the results are 

u k =  ?rt2[F(x,)+F(O)-2F(It,lr:)J (39) 
and 

= (1  + 4fk)uk/2tO+ n[& -x(x,)’/2 - X(o)”*+ 2X(ltkl t2)”21/ ( 0 .  (40) 

The contributions from F ( x , ) ,  X ( X , ) ” ~  and X(O)’/’= Itkt21 are regular and will be 
ignored. The remaining singular contributions are, for tk > 0, 

(41) 

and for tk < 0, are 

The above results may then be integrated to obtain the results for the leading singular 
parts ofj; given in (IS) and (16)  in the text. 

References 

Andrews G E, Baxter R J and Forrester P J 1984 3. Lor. Phys. 35 193 
Baxter R -I 1970 Phys. Re”. B I 2199 
Baxter R J 1982 Exactly Soloed Models in Slali$lical Mechonics (London: Academic) 
Bhattacharjee S M 1984 Phvr. Reu. Letr. 53 1161 
Fisher M E 1983 Cririeol Phenomena (Leelure Notes in Physics) e d  F J W Hahne (Berlin: Springer) ch 1 
Kasteleyn P w 1963 3. Morh. Phys. 4 287 
McCoy B M and Wu TT 1973 The Two-Dimensional Iring Model (Cambridge, MA: Harvard University Press) 
Montroll E W 1964 Applied Cumbinororiol Marhrmarics ed E F Beckenback (New York: Wiley) ch 4 
Nienhuis B, Hilhoret H I and Blote H W J 1984 J Phys. A: Marh. Gen. 17 3559 
Nagle J F, Yokoi C S 0 and Bhattacharjee S M 1989 Dimer models an anisotropic laftices Phose Transitions 

Nagle J F and Yakoi C S 0 1987 Phys. Rev. I3 35 5307 
Qnody R N ?..EA K:r?k V IR88 Phyr, Reo. R 3R 5061 
Onsager I. 1944 P h p  Rev. 65 I17 
Pokravsky V L and Talapov A L 1979 Phys Reo. Lelr. 42 65 
Wu F Y snd Lin K Y 1975 Phw. Reo. B 12 419 
Yokoi C S 0, Nagle J F and Salinas S R 1986 1. Slar. Php .  44 729 

and Criricol Phenomena ed C Domb and J L Lebowitz (New York: Academic) ch 2 


